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C_Euanlne-r_lch sequences of nucleic acids can form a wide variety pag =
of inter- or intramolecular four-stranded structures, termed qua-
druplexes. Such sequences occur at the ends of all eukaryotic % oty
chromosomes, in telomeric regions, and comprise tandem repeats ;
of simple motifs such as d(TTAGGG) or d(TGGGG). The building- ‘)h-‘a o
block of quadruplexes is the in-plane arrangement of four hydrogen-
bonded guanine bases, the G-tetrad, which can stack one on another E—— S
in a quadruplex,as revealed in a number of crystallographic and @ ® &
NMR studies® GUpS St

All quadruplexes require the presence of metal ions for stability. E}
These form a channel in the center of the moleéurystal- & *Ii
lographic studies on Na and K*-containing quadruplexes have Somns Woemy
shown that they always coordinate to the O6 atoms of gudhthe,
in accord with a number of NMR studiég.hese observations have g A

shown that octahedral coordination is common, especially when
an ion is midway between G-tetrads, as is the case withos.
Thus, ionic radius appears to be an important determinant of the P74
ability of a particular ion to stabilize a quadruplex. The accepted e ;g;-.'f
order of stabilizatio?P52is K* > Na" > NH,*, although other
jons such as CGa, Mn?*, S+, and PB™ have also been shor?
to impart quadruplex stabilization. Tlions have been found to
participate in the channel in the bimolecular quadruplex formed
by two strands of th@xytricha n@a quadruplex d(GT4G,), at
occupancies in the range 6:8.7, with a N& ion at the extremity
of the quadruplex, between a terminal G-tetrad and thymine Bases.
The simpler tetramolecular quadruplex, formed by four strands of
d(TG4T), has been crystallized in the presence of Na*, or TI* o,
ions11-13 This versatility is in accord with NMR studiesvhich 5\33 _
have also directly shown the presence of sodium, potassium, or ) = ) o .
ubicum ion i the (TGT) channek No rysalsructure of . F0U% L Aommus Hererce mape, i slcuon fety conourer
DNA quadruplex with a divalent channel cation has been reported mgost of the backbone removed to enhance clarity. The three horizontal peaks
to date, although the ability of €a and other ions to induce a are at the interface between the two crystallographically independent
transition from antiparallel to parallel topology suggests that they quadruplexes. The bottom figure shows a projection onto the plane of the
may have significant structural roles. The crystal structure of the ™0 tetrads at the interface, showing the four groove-bourtf @ns.
analogous (U@J) RNA quadruplex with St ions shows them  early stage in the refinement showed strong peaks in the channel,
occupying alternating positions in the chanffel. between each G-tetrad within the quadruplexes, and one between
We report here on a new crystal form for the intermolecular the two quadruplexes, which were initially assigned as ias.
quadruplex formed by four parallel strands of the sequence AJTG  Correct assignment of atom types to these peaks was facilitated by
Previous reports have shown Nens occupying all positions in calculation of an anomalous difference Fourier map, using the full

*

the G-tetrad chann€land, most recently, thalliuthions in the sphere of diffraction data. Calcium has an anomalous signal at the
region between two adjacent stacked quadruplexes. We have nowwavelength used for data collection (mirror-monochromatic @u K
crystallized this sequence in a mixed?Cand N& ion environ- radiation at 1.54178 A), with Af" of 1.286 e, whereas Nadoes
ment, and unexpectedly find an arrangement involving both ions, not have a significant signal (0.124 e) at this wavelength. Thus,
that has not been previously reported. we reasoned that, in the absence of any other metal ions, any
The crystal structure was solved to 1.55 A by molecular significant peaks on the anomalous difference map must be due to
replacement methods and refined to Rmof 16.3% and arRyee Ca&* ions. This map shows high density at three positions in the
value of 20.8% using data collected on a laboratory X-ray source. channel (Figure 1), although these are markedly asymmetric with
The crystallographic asymmetric unit in the space grdrip respect to the quadruplex dimer. These three peaks were assigned

contains two stacked d(T{B) quadruplexes, related by a pseudo- at full-occupancy C& ions, and other peaks found in difference
two-fold axis. Fourier and difference electron density maps at an electron density maps have been assigned asit\#s (although
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Figure 2. (a) View of the channel of C& (green) and N&a (mauve) ions

tions corresponded more closely with the crystal structure, although
some ion diffusion out of the channel did still occur in the early
stages of the 4 ns simulation.

The surprising finding here, of an asymmetric quadruplex dimer
with a very unequal distribution of €aions in the channel running
through the dimer, lends further support to the concept that the
C&" and N& ions in this quadruplex channel are mobile and can
readily interchange positions since their ionic radii are closely
similar (0.99 and 0.97 A).
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